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Abstract The overall pressure drop in an axisymmetric contraction is minimised using two
different grid sizes. The transition region was parameterised with only two design variables to
make it possible to create surface plots of the objective function in the design space, which were
based on 121 CFD calculations for each grid. The coarse grid showed to have significant
numerical noise in the objective function while the finer grid had less numerical noise. The
optimisation was performed with two methods, a Response Surface Model (RSM) and a gradient-
based method (the Method of Feasible Directions) to study the influence from numerical noise.
Both optimisation methods were able to find the global optimum with the two different grid sizes
(the search path for the gradient-based method on the coarse grid was able to avoid the region in
the design space containing local minima). However, the RSM needed fewer iterations in reaching
the optimum. From a grid convergence study at two points in the design space the level of noise
appeared to be sufficiently low, when the relative step size is 107 for the finite difference
calculations, to not influence the convergence if the errors are below 5 per cent for this contraction
geometry.

Introduction

Automatic design optimisation has become increasingly used over the past years,
mainly because of the recent advances in efficient and robust computational
algorithms for fluid applications and the fast development in computer resources.

The optimisation methods can be divided into several categories; e.g.
stochastic methods and gradient-based methods. Stochastic methods,
e.g. genetic algorithms, are global optimisation methods that search the entire
design space. These methods start with an initial family of solutions and use a
random element in the evolution of the design. Poorer and unfeasible new
designs are allowed in the short term to avoid local minima.

Because each individual CFD analysis is expensive to perform, gradient-
based optimisation algorithms are often used, which require relatively few
analyses compared to stochastic methods assuming the number of design
parameters and the number of active constraints is not too large. These
methods start from an initial design and use the gradient to determine the
search direction. A one-dimensional optimisation in this direction gives a new
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point in the design space from where a new search direction may be calculated.
Some more efficient methods use an approximation of the Hessian matrix of
second derivatives. The gradient can be derived in a number of different ways,
where the most straightforward is to use finite differencing. If one-sided
differencing is used N additional CFD calculations are required for every
iteration where N is the number of design variables. Another way to compute
the gradient is to solve the adjoint equation which can be derived from a
Lagrange formulation of the optimisation problem (Jameson ef al., 1998). With
this approach one only has to solve one finite difference equation to get the
gradient independently of the number of design variables. The computational
cost for solving this adjoint equation is comparable with one flow calculation.

A problem with gradient-based methods compared to stochastic methods is
that these methods are not global optimisation methods and are therefore
sensitive to numerical noise in the objective function. The occurrence of
numerical noise depends on the discretisation of the partial differential
equations and causes two problems (Giles, 1997). The first is that as the design
changes the grid usually does not vary continuously, particularly if
unstructured grids are used. This will produce small discontinuities in the
objective function. The second problem is inadequately resolved flow features
caused by a too coarse grid or discontinuities in the solution (such as shocks)
(Narducci et al., 1994), which will give rise to a small amplitude “wave-pattern”
in the design space superimposed on the objective function hypersurface.

For most shape optimisation problems it is not possible to be close to grid
independent solutions since each flow calculation is very time consuming,
therefore one has to consider the numerical noise in the objective function. One
way to reduce the influence from this numerical noise is to construct a response
surface of the objective function. A common response surface is obtained from
a least-square fit of a quadratic polynomial to discrete values of the goal
function.

The present paper considers a shape optimisation of an axisymmetric
contraction where the contraction is designed to minimise the overall pressure
drop. The optimisation is performed with two different grid sizes, one coarse
grid with significant numerical noise in the objective function and one finer
grid with less numerical noise. Two optimisation techniques, a response
surface model and a gradient-based method (the method of feasible directions),
are used to study how the solution is affected by the numerical noise.

Computational details

The geometric dimensions of the axisymmetric contraction were taken from
Wang et al. (1996) and appear in Figure 1. A commercial code (AEA-CFX) was
used for solving the flow problem (AEA Technology, 1999). It is a finite-volume
based code using a structured non-staggered multi-block grid. All terms in all
equations were discretisised using second-order centred differencing apart
from the convective terms. The convective terms in all equations were
discretised using hybrid differencing, which is a modification of upwind
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Figure 1.

Initial contraction
design with design
variables X1 and X2

differencing where central differencing is used if the mesh Peclet number is less
than two, and upwind differencing is used if the mesh Peclet number is greater
than two. This method is the default method in CFX due to its positive impact
on convergence. The expected overall behaviour of the numerical scheme is
somewhere between first and second order accuracy. The turbulence was
modelled using the standard k- model with wall function boundary condition.
The inlet conditions required for this model are the turbulence intensity and the
turbulence length scale. The turbulent quantities % and ¢ at the inlet are then
defined by (AEA Technology, 1999):

Fint = 1.5(itti1)?, (1)
k-l'S
Einl = O.Z?Z)’ (2)

where u;,; is the mean inlet velocity, ¢ is the turbulence intensity and D is the
dissipation length scale. The turbulence intensity was set to 5 per cent and
the dissipation length scale was set to equal the inlet diameter of the
contraction. At the inlet a constant axial velocity profile (plug profile) was also
specified. For the outlet the pressure was set to a constant value and for all
other variables a zero normal gradient was adopted which means that the flow
is assumed to be fully developed. The distance from the wall to the centre of the
first cell was monitored, and the grid for the initial design in the optimisation
was adjusted to have a non-dimensional wall distance for the wall cells of
y+ ~ 70, which is in the recommended region 30 < y* < 100 (Hallback et al,
1996). The Reynolds number based on the inlet diameter is taken to be 20,000.
For the coarse grid optimisation we used a mesh consisting of 84 cells and for
the less coarse grid optimisation 1,440 cells were used. These grid sizes are
very coarse by today’s standard but it serves the purpose of this study since it
brings out interesting features of the objective function. Due to convergence
problems the outlet was extended from L3 to 3-L3 for the finer grid. Of these
1,440 cells 880 are located in the part of the geometry shown in Figure 1.

For the optimisation we use a commercial design exploration system called
iISIGHT (Engineous Software, 1999). iSIGHT contains a number of different
optimisation algorithms, e.g. gradient methods, a genetic algorithm, a simulated
annealing algorithm, and is easy to couple to different simulation tools through
a visual programming language.
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Geometry parameterisation

The transition region is described by a spline curve where the tangent vectors
of the curve at the start point (P;) and end point (P5) are specified to be in the
axial direction (see Figure 1). The design parameters are the axial and the
radial position of a control point (P) on the spline curve. Both the spline curve
and the mesh are created by the pre-processor CFX-Build (AEA Technology,
1999). This simple geometry parameterisation will limit the possible shapes of
the transition region, but this is of less interest since the intention is not to
find the optimal contraction design but to study the influence of numerical
noise in the objective function during the optimisation. The parameterisation
with only two design variables was chosen because it is then possible to make a
surface plot of the objective function in the design space. However, it is believed
that an extension of the conclusions from this study will still be valid in a
multidimensional design space.

Optimisation methods

A response surface is used to approximate the objective function and
constraints. The optimisation is then performed with this approximation and
the response surface is updated with a CFD analysis in the proposed optimum.
The procedure is repeated until convergence to the optimum of the objective
function is reached. The most common approximation is to use a Taylor series
expansion (Vanderplaats, 1999):

F(X) = F(X") + VF(X?) - 6X + %6XTH(X0)6X + .. (3)

X =X -X° (4)

where X is a vector with design variables, X° is the best design point
calculated so far, VF(X") is the gradient and H(X) is the Hessian matrix. The
gradient and the Hessian are normally only approximated by a fit to randomly
spaced design points around X°. This means that equation (3) will be a
polynomial approximation of the objective function. The Response Surface
Models (RSM) in iSIGHT (Engineous Software, 1999) use polynomials of first
order or second order depending on the amount of data available. The first step
in the process is to initialise the RSM. For a first order approximation N+1
designs need to be specified and for a full quadratic approximation
(N+1)(IV+2)/2 designs are needed, where N is the number of design variables.
The initialisation is made by selecting a start design and specifying a fraction
of the design space in which initial random designs are generated. There are
several methods available based on classical design of experiments and
optimal design of experiments (Giunta ef al., 1994) that will produce a better
quality of fit than random point selection, but when only two design
parameters are used is the initialisation technique of less importance.
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For the optimisation of the contraction we start with a linear approximation.
When the RSM has been initialised VF can be determined by solving a linear
system of N+1 equations. The Sequential Quadratic Programming technique
SQP-DONLP is then used to find the minimum of this linear approximation,
with move limits on the design variables. A CFD analysis is performed with
this optimal design and the approximation is then updated to include one of the
terms in the Hessian matrix H. After (N+1)(N+2)/2 CFD analysis all terms in
the Hessian matrix H are included in the approximation. For additional design
points least squares fit will be used because the system of linear equations for
solving VF and H will then be overdetermined.

The performance of the approximation model is estimated using the so-
called Trust Region Ratio (Engineous Software, 1999):

F—F

TRR = 3=, (5)

where F; and Fy are the values of the objective function (from the CFD
analyses) between two iteration cycles, A; and A, are the approximate values.
If TRR = 1 there is a perfect performance of the approximation model, if
TRR = 0 there is no improvement between two iteration cycles and if TRR < 0
the new design is worse than the initial one. The value of TRR is used to decide
if the move limits should be increased, reduced or unchanged. If the value of
TRR is between 0.25 and 0.75, the move limits are unchanged. If the value is
larger than 0.75, the move limits are increased by 50 per cent and if the value is
below 0.25, the move limits are reduced by 50 per cent.

The second method used was the Method of Feasible Directions (Engineous
Software, 1999) which is a direct numerical optimisation technique. With this
method, we first find a search direction S and then move in this direction to find
a new design point according to:

X0 = X0 4o 87, 6)

where ¢ is the iteration number and the scalar « is determined by a one-
dimensional search. The method to define the search direction S depends on
whether any constraints are violated. If not, a conjugate direction is used as the
search direction:

S? = —VF(X!) + 3,8, (7)
where the scalar (3, is defined as:
|VEF(X4)|
b [VF(X?2)| ®)

If one or more constraints are violated the search direction S is found by
minimising:



VF(X41) .87 — a3, (9)

subject to:
Vg (X814 6,6<0 jel,

S7.87 <1, (10)
where ® is a large positive number, J is the set of active and violated
constraints and 6; is a push-off factor for constraints. If some constraints are
active but none are violated, ; in equation (10) and 3 in equation (9) are equal to
zero. VF in equations (7-9) and Vg in equation (10) are calculated using
forward finite differencing:

OF _F(X +eXi&) —F(X)
ox; eX;

(11)

where &; is a vector whose elements are zero except for the ith element which is
unity and e is the relative finite difference step size. There should be no
summation over indices 7 in equation (11). Calculating two points in the search
direction, besides the start point of the iteration, and finding the minimum of
the quadratic polynomial passing through these three points then performs the
one-dimensional search.

The objective function for the optimisation of the contraction is the non-
dimensional pressure coefficient (C,) defined by:

[pdA [ pdA
B A; A,
B 102 | A A, |’

F(p(X)) (12)

where U is the axial inlet velocity, A; and A, are the cross sections located at
the inlet and the outlet of the contraction respectively (see Figure 1). In order to
avoid problems with mesh generation the following side constraints on the
design variables are used.

20<X1<30

(13)
0.4 < X2 <08

Figure 2 shows the rectangular box formed by the side constraints and the
contraction shape at the corner points in the design space.
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Figure 2.

Contraction shapes at
the corner points of the
rectangular box formed
by the side constraints
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Figure 3.

Numerical noise in the
objective function due to
discretisation effects for
two different grid sizes

Results

Before the optimisation of the contraction shape, the pressure drop for the
whole design space was calculated from 121 CFD calculations for each grid
size. The design points were distributed in a 11 x 11 rectangular grid. Thus, it
is possible to create a surface plot of the pressure drop. Figure 3 shows the
objective function surface in the design space for the two different grid sizes.
As can be seen from this figure, there is a large number of local minima in the
objective function for the coarse grid. When the grid size is refined it is not
possible to detect any numerical noise, which indicates either that the grid size
is adequate to avoid the numerical noise or that the wave length of the “wave
pattern” is to small to be resolved by the 11 x 11 design points. Notice the
“valley” along a line approximately between the points [X1, X2] =[2.0, 0.6] and
[X1, X2] =[2.7, 0.4]. The slope of this line is small as the contraction shapes of
the design point along this line, and along other parallel lines, are very similar.
The optimum for the coarse grid is estimated by inspection of the 121 CFD
calculations to be at [X1, X2] = [2.0, 0.60] and the optimum for the finer grid is
estimated to be at [X1, X2] =[2.0, 0.64], where the pressure coefficient is 771.960
and 766.577 respectively.

Coarse mesh results

As mentioned earlier the optimisation starts with a linear approximation of the
objective function and as more design points become available the
approximation model is updated to a full quadratic polynomial approximation.
Table I and Figure 4a show the iteration history where the initial design is [X1,
X2] =[25, 0.6]. Here, only the outer iterations are shown, i.e. the design points
that involve CFD calculations, as the function evaluation time for a point on the
response surface 1s negligible compared to a CFD calculation. The large dots
are the design points needed to initialise the RSM. The termination criterion on
successive iteration changes in the objective function was set to
10% The best design is iteration six with [X1, X2] = [2.0, 0.6138] and
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C, = 772.067 to be compared with the estimated optimum at [X1, X2] = [2.0,
0.60] with C, = 771.960.

To improve the result of the optimisation a restart was made with [X1, X2] =
[2.0, 0.6138] as start design and the five closest design points were used to
initialise the RSM. Convergence closer to the true optimum was now reached
within two iterations, where [X1, X2] = [2.0, 0.5997] and C, = 771.961. This
indicates that the first response surface was too much influenced by the design
points far away from the optimum. A total of 11 CFD calculations were needed
to reach the final optimum (nine calculations before restart of the algorithm).

The optimisation on the coarse grid was also performed with the Method of
Feasible Directions. The initial design was [X1, X2] =[2.5, 0.6] and the relative
perturbation parameter ( for the gradient calculation was set to 10~*. Figure 4b
shows the iteration history where the points connected with broken lines are
the outer iterations, the remaining points belong to the gradient calculations
and the points needed for the one-dimensional searches. The global optimum
[X1, X2] =[2.0, 0.6019] with pressure coefficient equal to 771.955 was reached
in 12 outer iterations, which includes totally 63 CFD calculations. The local
minima are avoided by the gradient search since most of them are located at the
upper right part of the design space and the search path avoids that region.
Further optimisations with the gradient method using different start designs
showed no problems in reaching the global optimum, since the optimiser
always found the “valley” containing the global optimum after the first outer
iteration. The convergence criterion on successive iterations was set tighter for
the gradient method, 107, to avoid false convergence in the flat “valley”. The
RSM was not able to come as close to the true optimum as the gradient method.
However, the difference between the optimum pressure coefficient for the two
optimisation techniques was insignificant compared to the improvement of the
pressure coefficient from the initial design.

Fine mesh results

Also for the fine grid the contraction shape was optimised with both RSM and
the Method of Feasible Directions. The same start design and convergence
criteria were used. Table II and Figure 5a show the iteration history for the

Design variable 1 Design variable 2 Pressure
Iteration (X1) (X2) coefficient
1 2.5000 0.6000 787.393
2 2.3739 0.6502 787.638
3 2.0000 0.5134 784.573
4 2.0000 0.4500 839.606
5 2.9375 0.7050 797.200
6 2.0000 0.6138 772.067
7 2.0000 0.5772 772.557
8 2.0000 0.5795 772.444
9 2.0000 0.5800 772411

Influence from
numerical noise

13

Table 1.

Iteration history for
coarse grid
optimisation

using RSM
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Figure 4.

Iteration history for (a)
coarse grid optimisation
using RSM; and (b)
method of feasiable
directions
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optimisation using RSM. The three large dots in Figure 5a are the design points
needed to initialise the RSM. Convergence to the true optimum was not reached
without a restart in this case either. The best design was iteration six with [X1,
X2] =[2.000, 0.6361] and C, = 766.514. After a restart using this point and the
five closest points, three more iterations gave [X1, X2] = [2.000, 0.6225] with
C, = 766.441.

Since the numerical noise is less for the fine mesh, the optimisation using the
method of feasible directions showed, as expected, no problems in finding the



Design variable 1 Design variable 2 Pressure

Iteration X1) X2) coefficient
1 2.5000 0.6000 773.331
2 2.3739 0.7003 777.068
3 2.0000 0.4268 860.693
4 3.0000 0.7500 803.879
5 2.5865 0.7050 783.608
6 2.0000 0.6361 766.519
7 2.0000 0.7141 769.512
8 2.0000 0.6639 767.195
9 2.0000 0.6658 767.262
10 2.0000 0.6629 767.162
11 2.0000 0.6548 766.906
12 2.0000 0.6492 766.761
13 2.0000 0.6489 766.755
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Table II.

Iteration history for
fine grid optimisation
using RSM

global optimum (see Figure 5b). The design point [X1, X2] = [2.000, 0.6236]
with C, = 766.440 was reached in nine outer iterations, including 50 CFD
calculations.

Also with this grid size, considerably more iterations were needed to reach
the optimum design using the gradient-based method. It can also be noticed
that the difference in minimum pressure coefficient obtained by the two
optimisation strategies is very small.

Grid convergence error
Numerical noise in the objective function will always be present to some extent.
The results above for coarse and fine mesh indicate that some of the noise may
be associated with poor mesh resolution. It is therefore of interest to try to
estimate the magnitude of the numerical errors. Hopefully, with more
experience, it may be possible to determine acceptable levels of errors for which
it may be assumed that numerical noise is negligible in an optimisation
procedure. The first step in a design optimisation effort would then be to
estimate the required mesh size for errors below the “threshold” value that
should be used for the remainder of the simulations.

Richardson extrapolation has been used to estimate the grid convergence
error according to the method presented by Celik and Zhang (1995) where the
order of the numerical scheme and the extrapolated value can be derived from:

¢a2h - (Z)ag]’l — ag - O[Z;
¢a1h - d’azh Cv‘g — O[[i ’

obdn — oy
extrapolated = ——5——2, (15)
extrapolatre a‘g_l

(14)
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Figure 5.

Iteration history for (a)
fine grid optimisation
using RSM; and (b)
Method of Feasible
Directions
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where 7 is the grid cell size, p is the order of the scheme and « is the grid
refinement factor (the square root of the grid cell ratio between the finest grid
and the present grid). The subscript on « (1, 2 or 3) indicates the grid level. In
equation (15) oy has been assumed to be 1 while as and g are larger (fewer
grid points). Equation (14) is first used to make sure that 1 < p < 2, which
should be the case for a hybrid differencing method when the solutions are in
the asymptotic range (Bergstrom and Gebart, 1999). When the actual order of
the method is known equation (15) can be used to get an approximation of the



exact value. Using this extrapolated value an approximate relative grid
convergence error is then defined as (Celik and Zhang, 1995):

¢extmp0[ated - ¢h
d)extmpolated

€y approx =

: (16)

where ¢y, is the value from a grid having grid cell size /.

The pressure coefficient was used to check the grid convergence at two
points in the design space, one point in the middle of the design space (design
point 1), 1e. [X1, X2] = [25, 0.6], and the other point close to the optimum
(design point 2), at [X1, X2] = [2.0, 0.6]. The pressure coefficient and the
maximum y* value for the two design points appear in Table III for three
different grids with grid refinement factor one, two and four. The grid points in
the table include the extended outlet with length 3-L3. Equations (14) and (15)
now give p = 1.40 and @orprapoiatea = 736.477 for design point 1 and p = 1.51 and
Gextrapolated = 137.997 for design point 2.

By using equation (16), the estimated relative errors in the pressure
coefficient for the coarse grid were calculated to 6.9 per cent and 4.7 per cent, for
design points 1 and 2, respectively. The corresponding relative errors for the
finer grid were 5.0 per cent and 3.9 per cent.

Thus, it appears in the present case with a contraction geometry to be
sufficient if the errors are below about 5 per cent, when the relative step size is
107 for the finite difference calculations, to reduce the level of noise sufficiently
to not influence the convergence, 1.e. get caught in a local optimum.

Conclusions
The shape of an axisymmetric contraction has been optimised with two
different grid sizes to study how the solution is affected by the numerical noise
in the objective function. A surface plot of the objective function based on 121
CFD calculations in the design space showed a large number of local minima
for the coarse grid. The global optima for the two grid sizes were close to each
other in the design space which indicates that the optimisation could be started
with the coarse grid and to refine the grid as the optimiser moves closer to the
optimum.

The RSM and the Method of Feasible Directions were able to find the global
optimum with both the coarse grid and the fine grid. However, the RSM needed
much fewer iterations in reaching the optimum. There is also a risk of getting

Design point 1 [X1, X2] = [2.5, 0.6] Design point 2 [X1, X2] = [2.0, 0.6]

No. of grid Pressure Pressure

points coefficient yt coefficient yt
2,304 (a3 = 4) 751.383 77.3 749.903 75.9
9,216 (a2 = 2) 742.126 70.8 742.181 77.0

36,864 (a1 =1) 738.618 69.3 739.467 70.0
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Table III.

Pressure coefficient and
maximum
non-dimensional wall
distance (y*) for three
different grids at two
design points
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caught in a local optimum with the gradient-based method, although this was
avoided here because the “valley” containing the global optimum, which was
without local minima, was reached immediately, independently of the start
design. The restarts made with the RSM did not seem to be necessary, although
the design parameters changed, since the objective function showed little
improvement.

According to Giles the problem with numerical noise associated with the
discretisation of the partial differential equations may not become significant
until one is very close to the optimum solution, in which case it is not important
since the solution is sufficiently close to optimal (Giles, 1997). However, for this
contraction optimisation problem the numerical noise is distributed in the
whole design space and the solution at a local optimum can therefore differ
significantly from the solution at the global optimum.

From the grid convergence study it is difficult to suggest a limit on the error
that will cause the optimisation to fail since the optimum was found both on the
coarse and the fine grids. However, it appears for this contraction geometry to be
sufficient if the errors are below 5 per cent with the relative step size of 10~ for
the finite difference calculations. The noise level is then reduced enough to avoid
getting caught in a local optimum. This error level is probably dependent on the
choice of objective function. The pressure drop used here is related partly to the
shear stress acting tangent to the contraction wall and partly to changes in
dynamic pressure. The region with high shear stress is confined to the boundary
layer near the wall and the pressure drop will therefore be sensitive to variations
in the non-dimensional wall distance as a consequence of geometry
modifications. Calculations with the same geometry but different values on
maximum y* (between 70 and 90) showed significant changes in pressure drop.
The variations in the non-dimensional wall distance as the geometry changes
during the optimisation will contribute to the numerical noise. Hence, there is a
strong need for grid independent wall functions or turbulence models that
resolve the wall layer in shape optimisation. However, the low-Reynolds models,
where wall functions are not used, require in most cases too fine grid resolution
close to walls for practical use in an optimisation procedure.

Seeing that already a simple problem like this one exhibits a significant
influence from numerical noise makes it unreasonable to believe that the
objective function of a problem with more complicated flow will be more “well-
behaved”. Using a response surface method to approximate the objective
function seems to be a good way to minimise the influence from numerical noise.
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